20 research outputs found

    ARTEMIS: A complete mission architecture to bridge the gap between humanity and near-Earth asteroids

    Get PDF
    Asteroid retrieval missions have recently attracted increasing interest from the community and could provide opportunities for scienti c exploration, resource utilisation and even the development of planetary defence strategies. This paper was developed as a result of a 6-month MSc group project, realised by a total of 14 students at Cran eld University pursuing the Astronautics & Space Engineering degree. An overall system design is proposed for a technology demonstrator mission to move a near-Earth asteroid into an easily-accessible location where it could be further explored by future missions. The target nal orbit is a southern halo orbit around the Lagrange point (L2) on the Sun-Earth system. ARTEMIS (Asteroid Retrieval Technology Mission) abides by ESAs constraints for a Large (L) mission call: realised in only one launch with Ariane 64, an operational duration of less than 15 years and a cost at completion of at most e1100M. The proposed mission combines the design of optimal trajectories, employs advanced solar electric propulsion and introduces a be tting level of spacecraft autonomy. The target is the 2006 RH120 asteroid, with an approximate diameter of 6.5 m and mass of roughly 350 tons. To re ne existing data, the ARROW CubeSat mission (Asteroid Reconnaissance to Research Object Worthiness) is to be launched a year prior to the main mission to probe the asteroid via a y-by. ARROW will provide valuable information, such as the asteroids spin rate, rotational axis and better mass estimate, increasing the overall chance of mission success. The main mission will then capture and secure the asteroid using a mechanism of arm-like booms with xenon- lled VectranTM bags. To allow for proper adaptability to the objects shape and mass distribution, as well as preserve the asteroid unaltered, the mechanism is fully contained in fabric that encapsulates the asteroid. The paper concludes that such a mission is conditionally feasible, and summarises the design process resulting in the nal overall mission baseline design. It also examines the practicality of the suggested design for future missions such as space debris removal or its ability to retrieve celestial bodies with variable mass and shape. Proper adaptation of the design could allow for retrieval of similar size or smaller objects. The future implementation of this mission may further the understanding of the origin of the solar system and act as a catalyst to a new celestial body exploitation industry

    Matter-wave Atomic Gradiometer Interferometric Sensor (MAGIS-100)

    Full text link
    MAGIS-100 is a next-generation quantum sensor under construction at Fermilab that aims to explore fundamental physics with atom interferometry over a 100-meter baseline. This novel detector will search for ultralight dark matter, test quantum mechanics in new regimes, and serve as a technology pathfinder for future gravitational wave detectors in a previously unexplored frequency band. It combines techniques demonstrated in state-of-the-art 10-meter-scale atom interferometers with the latest technological advances of the world's best atomic clocks. MAGIS-100 will provide a development platform for a future kilometer-scale detector that would be sufficiently sensitive to detect gravitational waves from known sources. Here we present the science case for the MAGIS concept, review the operating principles of the detector, describe the instrument design, and study the detector systematics.Comment: 65 pages, 18 figure

    The Merits of Playing It by the Book: Routine versus Deliberate Learning and the Development of Dynamic Capabilities

    Get PDF
    In this study, we investigate the nature of dynamic capabilities and use a fine-grained measurement to test how centralization, routinization, and formalization relate to the underlying learning components of dynamic capabilities. We find that the effects of our three dimensions of managerial practices are broadly similar for almost all components of dynamic capabilities, and that only a few show a different pattern. Centralization and routinization are negatively related to dynamic capabilities, formalization is shown to have a significantly positive effect. We provide insights into the role of three dimensions of managerial practice by explaining variation among the learning components of dynamic capabilities. This has implications for the nature and development of dynamic capabilities as well as for the routine versus deliberate learning debate

    ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider

    Get PDF
    corecore